skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hsu, Huan-Hsuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The recent advances in bio-integratable electronics are creating new opportunities for investigating and directing biologically significant processes, yet their performance to date is still limited by the inherent physiochemical and signaling mismatches at the heterogeneous interfaces. Hydrogels represent a unique category of materials to bridge the gap between biological and electronic systems because of their structural/functional similarity to biological tissues and design versatility to accommodate cross-system communication. In this review, we discuss the latest progress in the engineering of hydrogel interfaces for bioelectronics development that promotes (1) structural compatibility, where the mechanical and chemical properties of hydrogels can be modulated to achieve coherent, chronically stable biotic-abiotic junctions; and (2) interfacial signal transduction, where the charge and mass transport within the hydrogel mediators can be rationally programmed to condition/amplify the bioderived signals and enhance the electrical/electrochemical coupling. We will further discuss the application of functional hydrogels in complex physiological environments for bioelectronic integration across different scales/biological levels. These ongoing research efforts have the potential to blur the distinction between living systems and artificial electronics, and ultimately decode and regulate biological functioning for both fundamental inquiries and biomedical applications. 
    more » « less
  2. null (Ed.)
    Biological wastewater treatment is the process in which contaminants can be removed or degraded by various microorganisms to eliminate the negative impact on environment and human health. Given the fact that traditional physical and chemical purification methods are high-cost, unsustainable and unspecific, biotreatment is playing an increasingly important role in the wastewater treatment field. The effective implementation of biotreatment strategy relies strongly on the intrinsic degradation capability of the microorganisms as well as their interaction with pollutants. In this review, we will focus on recent technological advances in engineering and improving biotreatment at both biocatalyst and bioreactor levels. Specifically, we will discuss the progress in synthetic biology for enhancing biosorption and biotransformation, and the challenges in applying engineered microorganisms on contaminated sites. We will further review the latest developments in bioreactor design, particularly the prospects of additive manufacturing/bioprinting to further optimize the mass transport inside bioreactors through complex 3-D structures and flexible material selections. These research efforts are redefining the frontier of biotreatment, and opening up new opportunities for cost-effective, efficient, and sustainable wastewater treatment. 
    more » « less
  3. null (Ed.)